
J Math Chem (2013) 51:1467–1477
DOI 10.1007/s10910-013-0160-9

ORIGINAL PAPER

Single-substrate enzyme kinetics: the quasi-steady-state
approximation and beyond

Sharmistha Dhatt · Kamal Bhattacharyya

Received: 8 January 2013 / Accepted: 9 March 2013 / Published online: 19 March 2013
© Springer Science+Business Media New York 2013

Abstract We analyze the standard model of enzyme-catalyzed reactions at various
substrate-enzyme ratios by adopting a different scaling scheme and computational
procedure. The regions of validity of the quasi-steady-state approximation are noted.
Certain prevalent conditions are checked and compared against the actual findings.
Efficacies of a few other measures, obtained from the present work, are highlighted.
Some recent observations are rationalized, particularly at moderate and high enzyme
concentrations.

Keywords Enzyme kinetics · Quasi-steady state approximation · Total QSSA ·
Padé approximants

1 Introduction

The kinetics of enzyme-catalyzed reactions is usually modeled by a set of coupled
differential equations, exact solutions of which are not obtainable in closed forms.
However, in view of the importance of such reactions involving biochemical systems,
simplifying assumptions are often made. One celebrated result of such endeavors is
the standard Michaelis–Menten (MM) form, based on the quasi-steady-state approxi-
mation (QSSA). Crucial in this treatment is the assumption that, after a short transient,
the concentration of the enzyme–substrate complex remains approximately constant.
The impact of the MM form is still quite significant [1].
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The two-step model is symbolized by the reaction scheme

S + E
k1
�
k−1

ES
k2→ P + E . (1)

On the basis of (1), various aspects of the QSSA have been studied from time to time.
An early study [2] revealed that any of the following four conditions is necessary:

(a) s0/e0 >> 1;
(b) s0/e0 << 1;
(c) k1s0/(k−1 + k2) << 1;
(d) k1e0/(k−1 + k2) << 1.

(2)

In (2), s0 and e0 refer to the initial concentrations of substrate and enzyme, respectively.
Later, Laidler et al. [3] also noted how the product profile gives a clear signature of
the validity of QSSA. Most authors [4–11], however, opine in favor of condition (2a)

only. A somewhat different condition for the validity of QSSA [12,13] reads as

e0/(s0 + Km) << 1, (3)

where Km is the Michaelis constant, defined by

Km = (k−1 + k2)/k1. (4)

Borghans et al. [14] distinguished different types of QSSA as standard QSSA
(s-QSSA), reverse QSSA (r-QSSA) and total QSSA (t-QSSA), depending on whether
the ratio s0/e0 is large, small or arbitrary. Several works [15–17] then concentrated on
moderate to high enzyme–substrate ratios. Tzafriri et al. [17] remarked that in case of
large e0/s0, (3) should be modified as

s0/(e0 + Km) << 1. (5)

Analyses over a wide range of the ratio s0/e0 were pursued in several recent theoretical
works [18–21] with interesting experimental relevance [22]. A route to calculate rate
constants also followed [23].

A few problems, however, remained unsolved. Thus, following an earlier work
[17], Kargi [20] mainly focused attention on variable s0/e0 ratio to conclude again that
t-QSSA can be implemented in any situation. A very recent work [21], on the other
hand, maintained that QSSA is valid, if at all, only for a short time-interval when e0/s0
is large and that the region of validity is considerably larger for large s0/e0.

In view of the above remarks, our purpose is to explore whether (i) QSSA is valid
irrespective of the value of the ratio s0/e0, (ii) the steady-state region, if exists, is
smaller for large e0/s0 ratio, (iii) the initial transient period is small when QSSA
holds, (iv) the set of conditions (2), or (3) or (5) works sensibly in predicting the
legitimacy of the QSSA, and (v) better measures of the applicability of QSSA exist.
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Answers to such questions can hopefully settle the issue of applicability of QSSA for
moderate-to-large ratio of e0/s0 [14–20].

The primary reason behind the emergence of varied criteria in the present context
lies in different forms of attack to the problem with diverse scaled variables [24].
The basic issue, however, can be resolved by invoking a straightforward strategy. For
example, the standard power-series method with Padé approximants (PA) [25] and a
very different scaling scheme can handle the problem quite efficiently, as may be seen
below.

2 The method

On the basis of (1), the following differential equations emerge:

d[S]
dt

= −k1[E][S] + k−1[ES], (6)

d[ES]
dt

= k1[E][S] − k−1[ES] − k2[ES], (7)

d[E]
dt

= −k1[E][S] + k−1[ES] + k2[ES], (8)

d[P]
dt

= k2[ES]. (9)

In addition, we have two mass conservation equations

e0 = [E] + [ES],
s0 = [S] + [ES] + [P]. (10)

To solve the above equations, we employ the following set of new dimensionless
variables:

α = [E]
e0

, β = [S]
e0

, γ = [ES]
e0

, δ = [P]
e0

, τ = k2t. (11)

Then, the principal kinetic equations, out of (6–9), may be compactly written as

dα

dτ
= dβ

dτ
+ (1 − α), (12)

dβ

dτ
= −K1βα + K2(1 − α), (13)

with initial conditions

α0 = 1, β0 = s0/e0. (14)

The constants K1 and K2 in (13) are given by

K1 = k1e0/k2, K2 = k−1/k2. (15)

123



1470 J Math Chem (2013) 51:1467–1477

The conservation equations (10) read now as

α + γ = 1, β + γ + δ = β0. (16)

The above system of non-linear equations (12, 13), with the aid of (16), can be solved
analytically using the traditional power series method. Expressing the concentrations
of the participating species in power series of τ , viz.,

ατ =
∑

j=0

α jτ
j , βτ =

∑

j=0

β jτ
j , γτ =

∑

j=0

γ jτ
j , δτ =

∑

j=0

δ jτ
j , (17)

inserting them suitably into (12) and (13), and collecting similar powers of τ , the
unknown parameters of the expansions are obtained. Note that our scaling is very
different from others [15,24]. Moreover, to tackle the expansions in (17) at large τ ,
we construct three types of PA, [N /N ], [(N+1)/N ] and [N /(N+1)], as found useful in
a variety of contexts (see, e.g. [26–28] and refs. quoted therein).

Numerical stability of our computations is checked via two routes. First, the esti-
mates are considered reliable when all three varieties of the above Padé sequences
agree. Secondly, one finds from (12), (13) and (16) that

dγ /dτ = K1β − (K1β + K2 + 1)γ. (18)

Therefore, the point τc at which γ attains its maximum value (γc) is obtainable from
(18) as

γc = K1βc/(K1βc + K2 + 1). (19)

Hence, from the computed temporal profiles of γ and β, we verify that (19) is obeyed.
Indeed, one can thus go well beyond the region of adequacy of QSSA, and hence can
assess the quality of the steady state, if there is any.

3 Legitimacy of QSSA

Theoretically, QSSA is best identified by noting the γ − τ plot. Usually, there is a
sharp rise to a maximum within the transient phase, followed by a steady phase that
may or may not last over a longer time scale. Equation (18) shows

(dγ /dτ)τ2
− (dγ /dτ)τ1

= K1
(
βτ2 − βτ1

) − K1
(
βτ2γτ2 − βτ1γτ1

)

−(K2 + 1)(γτ2 − γτ1). (20)

For an observable region over which QSSA will be valid, one needs to consider
τ2 > τ1 > τc. It is also apparent that, if such a region exists up to τ2, one would
have

(dγ /dτ)τ2
≈ (dγ /dτ)τ1

≈ 0; γτ2 ≈ γτ1 . (21)
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Condition (21) is satisfied by (20) only if

K1 << 1. (22)

Thus, (22) turns out to be one necessary condition.
Another deductive analysis arises out of the observation that βτ shows a linear

fall-off beyond τ = τc up to the range of validity of QSSA. Thus, we can write

βτ = βc + β̄(τ − τc), τ > τc. (23)

From (12), however, one notes that

(dβ/dτ)τ=τc
= −γc. (24)

Therefore, one obtains from (23) and (24) that

β̄ = −γc. (25)

We now pay attention to (13) and write

− γc ≈ −K1βτ (1 − γτ ) + K2γτ . (26)

Putting (23) and (25) in (26), a rearrangement leads to

γτ ≈ γc + (γc − 1)
K1γc

K1βc + K2
(τ − τc), (27)

correct up to first order in (τ − τc). Now, if γ has to show a maximum at τ = τc,
then we expect no first-order term in the expansion (27). In other words, we have the
condition for QSSA

|K1γc/(K1βc + K2)| << 1. (28)

Since βc or γc can vary arbitrarily, a sufficient condition for the satisfaction of (28) is

K2/K1 >> 1. (29)

However, (29) may be relaxed when (28) holds by virtue of very small γc or large βc.
In effect, therefore, we have arrived at two conditions here for the validity of QSSA.

The first one is (22) and the second one is (28); both are necessary conditions, but (29)
is a sufficient one to validate (28).
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Table 1 Characteristics of sets with varying ratios of s0/e0 and K2/K1 and at several K1 values

s0, e0 τc (k1, k−1, k2) Conditions K1 K2/K1 Observed
2(a) 2(b) 2(c) 2(d) 3 5

10, 1 0.9 (0.05, 0.05, 1.0) Y N N Y Y – 0.05 1.0 No QSSA

0.6 (0.1, 10.0, 1.0) Y N Y Y Y – 0.1 100.0 QSSA

1, 1 0.9 (1.0, 0.8, 1.0) N N N N N – 1.0 0.8 No QSSA

0.9 (0.01, 10.0, 1.0) N N Y Y Y – 0.01 1000.0 QSSA

1, 10 1.0 (0.1, 0.1, 1.0) N Y Y N N Y 1.0 0.1 No QSSA

4.4 (0.001, 0.1, 1.0) N Y Y Y Y Y 0.01 10.0 QSSA

The observations correspond to Figs. 1, 2 and 3

Fig. 1 Plots of the scaled
complex concentration γ as a
function of scaled time τ at
s0/e0 = 10. Note that only a
small value of K1 does not
guarantee QSSA and that a small
γc is not mandatory
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4 Results and discussion

We now examine the adequacy of our analysis. Table 1 shows a total of six sample
results studied via our method. For a fixed ratio of s0/e0, two distinct situations are
shown; the first entries do not conform to QSSA, while the second ones do. The
corresponding γ −τ plots are shown in Figs. 1, 2 and 3 with cases (a) referring to sets
where QSSA is not obeyed, and cases (b) in tune with QSSA. Particularly interesting
here is Fig. 3, with K2/K1 = 10 only. Had this value been larger, one would find a still
longer steady region. Indeed, cases (b) of Figs. 2 and 3 support a few earlier works
[18–20] beyond doubt.
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Fig. 2 Plots of the scaled
complex concentration γ as a
function of scaled time τ at
s0/e0 = 1. Note that a small τc is
never an indicator of QSSA
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Fig. 3 Plots of the scaled
complex concentration γ as a
function of scaled time τ at
s0/e0 = 1/10. Note again that a
small τc cannot ensure QSSA.
Also, here γc is small, but τc is
large. This is opposite to the
findings of Fig. 1
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The figures reveal, in addition, that a small value of neither γc nor τc guarantees
t-QSSA. Moreover, these two quantities do not run parallel in the sense that a small
γc never ensures that τc would be small.
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Table 2 Predictions based on (22) and (29) for sets chosen in ref. [21] with varying ratios of s0/e0 and
K2/K1 and at several K1 values

s0, e0 (k1, k−1, k2) Conditions K1 K2/K1 Expected
2(a) 2(b) 2(c) 2(d) 3 5

10, 1 (0.1, 1, 100) Y N Y Y Y – 0.001 10.0 QSSA

(0.1, 100, 1) Y N Y Y Y – 0.1 1, 000.0 QSSA

(1, 0.1, 100) Y N Y Y Y – 0.01 0.1 QSSA

(1, 100, 0.1) Y N Y Y Y – 10.0 100.0 No QSSA

(100, 0.1, 1) Y N N N Y – 100.0 0.001 No QSSA

(100, 1, 0.1) Y N N N Y – 1, 000.0 0.01 No QSSA

(1, 1, 1) Y N N N Y – 1.0 1.0 Borderline

1, 1 (0.1, 1, 100) N N Y Y Y – 0.001 10.0 QSSA

(0.1, 100, 1) N N Y Y Y – 0.1 1, 000.0 QSSA

(1, 0.1, 100) N N Y Y Y – 0.01 0.1 QSSA

(1, 100, 0.1) N N Y Y Y – 10.0 100.0 No QSSA

(100, 0.1, 1) N N N N N – 100.0 0.001 No QSSA

(100, 1, 0.1) N N N N N – 1, 000.0 0.01 No QSSA

(1, 1, 1) N N N N N – 1.0 1.0 No QSSA

1, 10 (0.1, 1, 100) N Y Y Y Y Y 0.01 1.0 QSSA

(0.1, 100, 1) N Y Y Y Y Y 1.0 100.0 No QSSA

(1, 0.1, 100) N Y Y Y Y Y 0.1 0.01 Borderline

(1, 100, 0.1) N Y Y Y Y Y 100.0 10.0 No QSSA

(100, 0.1, 1) N Y N N N Y 1, 000.0 0.0001 No QSSA

(100, 1, 0.1) N Y N N N Y 10, 000.0 0.001 No QSSA

(1, 1, 1) N Y N N N Y 10.0 0.1 No QSSA

The sets are defined by (k1, k−1, k2) [21]

Table 1 displays also the various criteria used by several authors from time to time
(see text). To test, we have fixed here a standard. If a quantity ‘q’ is said to obey q << 1,
we accept a value of 1/10 or lower. Similarly, we allow q ≥ 10 to imply q >> 1.
In Table 1, satisfaction of a condition is reported by ‘yes/no’ type response. Since
condition (5) is said to work only for large e0, we show its worth only at appropriate
places. But, no single condition has come up as a right criterion. Even, one cannot go
by majority. As an alternative, if we stick to our criteria of low K1 and high K2/K1,
the observations quoted in the table can all be rationalized.

In Table 2, we predict definitive fates of the diverse sets chosen in a very recent
study [21]. Note that, in the excess enzyme case, it would be unwise to employ the
last set to observe a steady state [21]. Better, one should have chosen a different set
of values for (k1, k−1, k2) like (0.1, 10, 10), or still better (0.1, 100, 100). One is also
not sure about the adequacy of QSSA for the last set in the s0/e0 = 10 case either, as
reported [21]. Only, a large βc in (28) can somehow favor the situation.
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Fig. 4 Temporal plots of η [see
(32)] at s0/e0 = 10 for the cases
a and b; QSSA is obeyed only in
the latter case
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Fig. 5 Temporal plots of η [see
(32)] at s0/e0 = 1 for the cases a
and b; QSSA is obeyed only in
the latter case
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Conventionally, the MM kinetics is given by

dδ/dτ = K1β/(K1β + K2 + 1) (30)

and, if QSSA is valid, we find that

dδ/dτ = γc. (31)

Therefore, satisfaction of the condition

η = γc(K1β + K2 + 1)/K1β = 1 (32)

would ensure the validity of QSSA in justifying the MM form. We show in Figs. 4, 5
and 6 how far (32) is obeyed for the cases described in Table 1. They reveal, one can
confide on our analysis.
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Fig. 6 Temporal plots of η [see
(32)] at e0/s0 = 10 for the cases
a and b; QSSA is obeyed only in
the latter case
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5 Conclusion

In brief, we have thus found that QSSA (i) can be acceptable at both moderate and
large e0/s0 under conditions similar to those applicable to large s0/e0, (ii) can hold over
a good span of time at large K2/K1, (iii) can show up even when γc or τc is not small
enough, and (iv) requires validity of conditions (22) and (28). We have also settled the
issue of the adequacy of t-QSSA [18–20] for large e0/s0 versus its alleged inadequacy
[9,10,21]. Thus, MM kinetics can hold irrespective of the enzyme–substrate ratio,
provided proper rate constants are chosen. In fine, our work examines the kinetic
equation without any restriction on the enzyme–substrate ratio to encompass both
classical in-vitro as well as biotechnologically-pro in-vivo situations.
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